JEFO PROTEASE ON LOW DENSITY DIETS FOR BROILER CHICKENS

Southern Poultry Research Inc. - Athens, Georgia, USA

OBJECTIVE

To evaluate the performance of broiler chickens supplemented with **Jefo Protease** in diets with reduced density.

MATERIALS AND METHODS

A total of 1000 Cobb male chickens were distributed in 50 pens of 20 birds and divided in 5 treatments with 10 replicates each. All diets contained phytase and b-mannanase and were pelleted (80° C, 1 minute). Information about the diets is available on Tables 3 and 4.

Table 1. Treatments distribution

	Protease Supplementation	Feed Formulation
T1	-	Standard: Regular feeding program from a large integrator in the USA
T2	-	5% reduction CP and digestible lysine ¹
T3	Jefo Protease (125g/t)	5% reduction CP and digestible lysine
T4	-	8% reduction CP and digestible lysine ¹
T5	Jefo Protease (125g/t)	8% reduction CP and digestible lysine

¹The ratio of the other essential amino acids to lysine was kept the same as in the Standard Diet. CP: crude protein.

RESULTS

Table 2. Zootechnical Performance

	Standard Diet	5% Nutritional Reduction Diet		8% Nutritional Reduction Diet		
	No protease	No Protease	+ Jefo Protease	No protease	+ Jefo Protease	<i>P</i> -value
0-19 days						
BWG, kg	0.555ª	0.519 ^b	0.524 ^b	0.529 ^b	0.529 ^b	0.04
FC	1.404ª	1.466 ^b	1.441 ^{ab}	1.485 ^b	1.458 ^b	0.04
0-35 days						
BWG, kg	1.904ª	1.789°	1.875 ^{ab}	1.788°	1.843 ^b	< 0.001
FC	1.602ª	1.671 ^{cd}	1.627 ^{ab}	1.686 ^d	1.652 ^{bc}	< 0.001
0-42 days						< 0.001
BWG, kg	2.424ª	2.339 ^{bc}	2.419ª	2.319°	2.395 ^{ab}	0.01
FC	1.690ª	1.743 ^{cd}	1.708 ^{ab}	1.767 ^d	1.730 ^{bc}	
Mortality, %	1.0	3.5	3.0	2.5	12.5.0	-
Mortality, kg	1.650	4.273	2.440	2.578	3.247	-
EPEF	338	308	327	305	321	-

Feed Intake: There was no significant difference in feed intake among all treatments (P>0.25). ^{a.b.c.d} Values with different superscripts are different (P<0.05).

BWG: body weight gain; FC: feed conversion.

EPEF: European Production Efficiency Factor = <u>Body Weight, kg x Livability, %</u> x 100

Age, days x Feed Conversion

weight gain (kg)

Body

Figure 1. Average body weight gain at 42 days. a.b.c. Values with different superscripts differ (P<0.001).

Figure 2. Average feed conversion ratio from 0 to 42 days. a,b,c,d Values with different superscripts differ (P<0.001).

Table 3. Digestible lysine (Dig Lys) and percentage of lysine reduction in the diets with nutritional reduction in relation to the Standard Diet

	Standard Diet	5% Nutritiona	5% Nutritional Reduction Diet		8% Nutritional Reduction Diet	
Feeding Period	Dig Lys, %	Dig Lys, %	Lys Reduction, %	Dig Lys, %	Lys Reduction, %	
Starter (0-19 d)	1.21	1.15	4.96	1.11	8.26	
Grower (19-35 d)	0.96	0.91	5.21	0.88	8.33	
Finisher (35-42 d)	0.81	0.77	4.94	0.75	7.41	

Table 4. Inclusion level of the major ingredients in the Standard Diet

	Ingredient, %				
Feeding Period	Corn	Soybean Meal	Corn DDGS		
Starter (0-19 d)	61	31	3		
Grower (19-35 d)	67	23	2		
Finisher (35-42 d)	74	17	4		

CONCLUSION

-Reduction in diet density (crude protein and amino acids) resulted in poorer growth performance (comparison between "Standard Diet", "5% Nutritional Reduction Diet" and "8% Nutritional Reduction Diet" without protease supplementation).

-Jefo Protease was able to improve zootechnical performance of broilers when supplemented to low density diets.